
1

425 F16 3:1 ©J Archibald

4.3: The shared data problem

•  Inconsistency in data used by a task and updated by an ISR;
arises because ISR runs at just the wrong time.

•  Data is often shared because it is undesirable to have ISRs do all the
work – they would take too long to run.
–  ISRs typically “hand off” some of the processing to task code.

–  This implies shared variables or communication between the ISR and the
related task.

•  Lab 3 simpler (in part) because we don’t have to worry about this: the
task and interrupt code are unrelated.

425 F16 3:2 ©J Archibald

Figure 4.4: code example

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{

 iTemperatures[0] = !! read in value from HW
 iTemperatures[1] = !! read in value from HW

}

void main (void)
{

 int iTemp0, iTemp1;
 while (TRUE)
 {
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 if (iTemp0 != iTemp1)
 !! Set off howling alarm;
 }

}

What does this code do?

425 F16 3:3 ©J Archibald

Fig 4.4: observations
•  Note keyword “interrupt” in first function. (It is an ISR written in C;

our tools don’t support this.)
–  It is never called from task code; when will it run?
–  How do we connect this ISR with its interrupt?

•  The main routine is an infinite loop.
–  Rare in conventional code, common in embedded systems.
–  Compares two temperatures and raises alarm if they ever differ.

•  The ISR updates the temperature variables.
–  Assume interrupt asserted at

•  regular intervals, based on timer, or
•  when either temperature changes

425 F16 3:4 ©J Archibald

Figure 4.4: analysis
static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{

 iTemperatures[0] = !! read in value from HW
 iTemperatures[1] = !! read in value from HW

}

void main (void)
{

 int iTemp0, iTemp1;
 while (TRUE)
 {
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 if (iTemp0 != iTemp1)
 !! Set off howling alarm;
 }

}

What can go wrong?

Suppose interrupt
occurs here

425 F16 3:5 ©J Archibald

The shared-data problem

•  Imagine this scenario:
–  Temperature rising, both values identical at each reading.

•  Say, 80 at one reading, 81 at the next.

–  Interrupt occurs between reads in task code.
–  Test in main() compares old value with new value.
–  Result: (false) alarm set off, evacuations begin.

•  To prevent, programmer must carefully analyze all code
–  Is there a point in code where an interrupt can mess things up?

425 F16 3:6 ©J Archibald

Figure 4.5: Does this fix problem?
static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{

 iTemperatures[0] = !! read in value from HW
 iTemperatures[1] = !! read in value from HW

}

void main (void)
{

 while (TRUE)
 {
 if (iTemperatures[0] != iTemperatures[1])
 !! Set off howling alarm;
 }

}

Only change to code:
•  global array values

tested directly

2

425 F16 3:7 ©J Archibald

Consider 8086 instruction sequence
static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{

 iTemperatures[0] = !! read in value from HW
 iTemperatures[1] = !! read in value from HW

}

void main (void)
{

 while (TRUE)
 {
 if (iTemperatures[0] != iTemperatures[1])
 !! Set off howling alarm;
 }

}

 ...
 mov ax,[iTemperatures+0]
 cmp ax,[iTemperatures+2]
 je okay
 ; set off alarm

okay: ...

425 F16 3:8 ©J Archibald

Ensuring correctness

•  Key issue: will single machine instruction access the two values?
•  If not (the case for almost all CPUs),

–  An interrupt can occur between the two memory reads. (Will it?)
–  The code can trigger a false alarm.

•  If yes, the code may work for this CPU, but not others.
–  Best if the code we write will work on all target platforms.

425 F16 3:9 ©J Archibald

The big picture

•  When does shared data problem arise?
–  When data is shared between an ISR and task code it interrupts, and when

the data can reach an inconsistent state through the actions of the ISR.
•  The hard part:

–  Does the bug appear consistently?
–  Would it turn up during testing?

•  Only real solution: write bug-free code.
–  Think long and hard about correctness of code at all levels.
–  Stick with basic principles that work.
–  But still do lots of testing!

425 F16 3:10 ©J Archibald

Figure 4.5
One solution: disable interrupts

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{

 iTemperatures[0] = !! read in value from HW
 iTemperatures[1] = !! read in value from HW

}

void main (void)
{

 while (TRUE)
 {
 if (iTemperatures[0] != iTemperatures[1])
 !! Set off howling alarm;
 }

}

 ...
 cli
 mov ax,[iTemperatures+0]
 cmp ax,[iTemperatures+2]
 sti
 je okay
 ; set off alarm

okay: ...

Why does this work?

425 F16 3:11 ©J Archibald

Implementation options

_asm {
 cli
}

iTemp0 = ...;
iTemp1 = ...;

_asm {
 sti
}

disable();
iTemp0 = ...;
iTemp1 = ...;
enable();

; assembly code
disable: cli

 ret

enable: sti
 ret

What are tradeoffs?

inline assembly function call

425 F16 3:12 ©J Archibald

Comparison

•  Overhead for function call method
–  call, cli, ret

•  Overhead for inline assembly method
–  cli

•  Which method gives best performance?
–  Is the difference significant?

•  Which method results in more portable code?

3

425 F16 3:13 ©J Archibald

Discussion

•  Why lock out all interrupts, and not just mask the one with the ISR that
accesses the shared data?
–  Selective masking would reduce disruption to rest of system.

•  Considerations:
–  Interrupts are disabled only briefly.

–  Increasing response time by 1-2 instructions is not a big deal.

–  The overhead of disabling single interrupt is generally higher;
details are platform dependent.

•  Disabling all interrupts is a simple, one-size-fits-all solution.
–  BUT you must ensure that interrupts are not disabled for too long!

425 F16 3:14 ©J Archibald

Compiler limitations

•  Why can’t compilers handle this automatically?
–  In general, compilers cannot identify (truly) shared data, let alone analyze

dynamic access patterns to that data.
–  It’s plenty hard for humans to do – even for developer who understands the

code.

•  No existing tools are clever enough to determine automatically when
interrupts need to be disabled.

425 F16 3:15 ©J Archibald

Terminology

•  Atomic: a section of code is atomic if it cannot be
interrupted, i.e., if it can be guaranteed to execute as an
unbreakable unit.

•  Critical Section: a section of code that must be atomic for
correct operation.

425 F16 3:16 ©J Archibald

Atomicity

•  Shared data problem arises when task code accesses shared data non-
atomically.

•  What are the natural atomic units of execution?
–  Single machine instructions only.
–  A line of C-code rarely maps to a single instruction. (If a line of your C-code

must be atomic, then you have a critical section.)

•  How can we make portion of code atomic?
–  Principal approach: disabling interrupts at start, enable interrupts at end.
–  We’ll consider alternative approaches later.

425 F16 3:17 ©J Archibald

Figure 4.9: What can go wrong here?
static int iSeconds, iMinutes, iHours;

void interrupt vUpdateTime (void)
{

 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0;
 ++iHours;
 if (iHours >= 24)
 iHours = 0;
 }
 }
 !! Do whatever needs to be done to the HW

}

long lSecondsSinceMidnight(void)
{

 return (((iHours * 60) + iMinutes) * 60) + iSeconds;
}

How far off can
return value be?

425 F16 3:18 ©J Archibald

Figure 4.9: Making it atomic
static int iSeconds, iMinutes, iHours;

void interrupt vUpdateTime (void)
{

 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0;
 ++iHours;
 if (iHours >= 24)
 iHours = 0;
 }
 }
 !! Do whatever needs to be done to the HW

}

long lSecondsSinceMidnight(void)
{

 return (((iHours * 60) + iMinutes) * 60) + iSeconds;
}

long lSecondsSinceMidnight(void)
{

 disable();
 return (((iHours * 60) + iMinutes) * 60) + iSeconds;
 enable();

}

 A very bad “solution”!

4

425 F16 3:19 ©J Archibald

Figure 4.9: Making it atomic

long lSecondsSinceMidnight(void)
{

 long lReturnVal;
 disable();
 lReturnVal = (((iHours*60)+iMinutes)*60)+iSeconds;
 enable();
 return lReturnVal;

}

 A better solution

static int iSeconds, iMinutes, iHours;

void interrupt vUpdateTime (void)
{

 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0;
 ++iHours;
 if (iHours >= 24)
 iHours = 0;
 }
 }
 !! Do whatever needs to be done to the HW

}

long lSecondsSinceMidnight(void)
{

 return (((iHours * 60) + iMinutes) * 60) + iSeconds;
}

425 F16 3:20 ©J Archibald

Figure 4.9: Making it atomic
static int iSeconds, iMinutes, iHours;

void interrupt vUpdateTime (void)
{

 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0;
 ++iHours;
 if (iHours >= 24)
 iHours = 0;
 }
 }
 !! Do whatever needs to be done to the HW

}

long lSecondsSinceMidnight(void)
{

 return (((iHours * 60) + iMinutes) * 60) + iSeconds;
}

long lSecondsSinceMidnight(void)
{

 long lReturnVal;
 BOOL fInterruptStateOld;
 fInterruptStateOld = disable();
 lReturnVal = (((iHours*60)+iMinutes)*60)+iSeconds;
 if (fInterruptStateOld) enable();
 return lReturnVal;

}

 The best solution

425 F16 3:21 ©J Archibald

A subtle point

•  What can go wrong with “better” solution?
–  Consider scenario: function called within critical section in another

function: interrupts will be re-enabled and should not be.
–  Some of you will experience this in your code this semester.

•  How is “best” solution an improvement?
–  Re-enables interrupts only if they were on in first place.
–  Allows function with critical section to be called from normal code

and from other critical sections.

425 F16 3:22 ©J Archibald

Figure 4.11: Another approach:
What was changed, and does it work?

static long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight (void)
{

 return lSecondsToday;
}

425 F16 3:23 ©J Archibald

Fig 4.11: Discussion

•  Just counts seconds, only one shared variable.
–  ISR, task functions share a single variable.

•  Does the problem go away?
–  No, just more subtle: accessing a single variable is not necessarily atomic.
–  Example: accessing a long on 8086 takes multiple instructions; can be

interrupted between 16-bit accesses. (How far off can it be?)

•  Bottom line: even with code accessing a single shared variable, you’re
usually better off disabling interrupts.
–  Code more portable to new target platforms.

425 F16 3:24 ©J Archibald

Figure 4.12: Yet another approach

static long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight(void)
{

 long lReturn;
 lReturn = lSecondsToday;
 while (lReturn != lSecondsToday)
 lReturn = lSecondsToday;
 return lReturn;

}

5

425 F16 3:25 ©J Archibald

Fig 4.12: Discussion

•  Basic idea: read value repeatedly until you get two identical readings
–  An alternative to disabling interrupts.

•  But what will a good optimizing compiler do with this code?
–  Read from memory just once, keep the value in a register.
–  Compiler sees nothing in code to modify value between the two reads.

•  Solution?
–  Use volatile keyword: forces compiler to read memory every time variable is

accessed and to avoid “obvious” optimizations.
–  Tells compiler that variable can be changed by something unseen.

425 F16 3:26 ©J Archibald

Figure 4.12: Modified version

static volatile long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight(void)
{

 long lReturn;
 lReturn = lSecondsToday;
 while (lReturn != lSecondsToday)
 lReturn = lSecondsToday;
 return lReturn;

}

425 F16 3:27 ©J Archibald

Response time revisited
•  How long does it take for the system to respond to an interrupt?

Task

IRQ2 asserted

interrupts
disabled

IRQ1 asserted

interrupts
disabled

ISR 2

Handler 1

ISR 1

Handler 2
(actual response)

425 F16 3:28 ©J Archibald

Worst-case interrupt latency:
components

1.  The longest period of time that interrupts are disabled
2.  The total time required to execute all ISRs + handlers of higher priority

3.  The time for hardware to stop what it is doing, save critical state, and
start executing the ISR for that interrupt

4.  The time for the ISR+handler to save the context and then do the work
that we consider to be the “response”

425 F16 3:29 ©J Archibald

What can designer control?

1.  Max length of critical sections?
•  Keep them short!

2.  Execution time of higher-priority ISRs?
•  Assign priorities carefully.
•  Keep all ISRs lean and mean.

3.  Overhead of hardware response?
•  Fixed when you select the processor.

4.  Time to save context, run handler?
•  Size of context depends on number of registers – fixed for CPU
•  Handler efficiency: good coding

425 F16 3:30 ©J Archibald

Measuring time

•  In simulator, time unit is time to execute one instruction
–  Simple model: all instructions take same time to execute
–  Unlikely to be true in any implementation, but added realism buys little.

•  CPU respond to asserted, enabled interrupt before starting next
instruction

•  Overhead of hardware response on 8086:
–  Finish current instruction
–  Push 3 words on stack, read 2 words from interrupt vector table

6

425 F16 3:31 ©J Archibald

Meeting design specifications

•  What do we need to know to ensure that response time will be less
than, say, 625 µs?
–  Identify all critical sections, max length of each

•  Only longest critical section need concern us: no way to transition to another
without hardware responding to pending interrupt.

–  Hardware priority level assigned to relevant interrupt
–  Run length of higher-priority ISRs + handlers

•  Just one time through each, or multiple runs?
–  Run length of this ISR + handler to point of “response”

•  How important is such a guarantee?
–  Critical in real world, less so in 425 labs

425 F16 3:32 ©J Archibald

Fig. 4.15: Another alternative to disabling interrupts
static int iTemperaturesA[2], iTemperaturesB[2];
static BOOL fTaskCodeUsingTempsB = FALSE;
void interrupt vReadTemperatures (void)
{

 if (fTaskCodeUsingTempsB)
 {

 iTemperaturesA[0] = !! read in value from HW
 iTemperaturesA[1] = !! read in value from HW
 }
 else
 {
 iTemperaturesB[0] = !! read in value from HW
 iTemperaturesB[1] = !! read in value from HW
 }

}

void main (void)
{

 while (TRUE)
 {
 if (fTaskCodeUsingTempsB)
 if (iTemperaturesB[0] != iTemperaturesB[1])
 !! Set off howling alarm;
 else
 if (iTemperaturesA[0] != iTemperaturesA[1])
 !! Set off howling alarm;
 fTaskCodeUsingTempsB = !fTaskCodeUsingTempsB;

 }
}

425 F16 3:33 ©J Archibald

Fig. 4.15: Discussion

•  Key idea: use double buffering with a global flag to ensure that the reader
and writer access separate arrays.

•  Does this work?

–  Global flag does not change while temperatures are being read in task code,
especially at critical point between the two reads.

–  Values tested in task code are always corresponding pair – no way for ISR to
change them at wrong time while reading.

•  What are disadvantages?

425 F16 3:34 ©J Archibald

Figure 4.16: Yet another alternative
#define Q_SIZE 100
int iTemperatureQ[Q_SIZE];
int iHead = 0;
int iTail = 0;

void interrupt vReadTemperatures (void)
{

 if (!((ihead+2==iTail) ||
 (iHead==Q_SIZE-2 && iTail==0)))
 {
 iTemperatureQ[iHead] =
 !! read one temperature
 iTemperatureQ[iHead+1] =
 !! read other temperature
 iHead += 2;
 if (iHead==Q_SIZE)
 iHead = 0;
 }
 else
 !! throw away next value

}

void main (void)
{

 int iTemp1, iTemp2;

 while (TRUE)
 {
 if (iTail != iHead)
 {
 iTemp1 = iTemperatureQ[iTail];
 iTemp2 = iTemperatureQ[iTail+1];
 iTail += 2;
 if (iTail == Q_SIZE)
 iTail = 0;
 !! Compare values
 }
 }

}

425 F16 3:35 ©J Archibald

Figure 4.16: Discussion

•  Key idea: use circular queues.
–  Queue buffers data between ISR and task that processes it.

–  Buffering with queues is a commonly used technique.

•  Queue management:
–  Queue full: head+2 == tail (2 slots used/sample)

–  Queue empty: head == tail

•  Advantage: queue decouples the data arrival rate (possibly bursty) from
the data processing rate.
–  Processing rate must be at least as great as the average arrival rate.

425 F16 3:36 ©J Archibald

Figure 4.16: Discussion

•  How fragile is this code? How easy to get it wrong?
–  Task must read the data, then revise tail variable

•  Reversing order would allow ISR to overwrite data before it is read.

–  When tail is incremented, the write (not necessarily the increment)
to tail must be atomic.

•  Otherwise reader and writer could see different pictures of shared array.
•  The operation is generally atomic, but not on all platforms.

•  Overall assessment:
–  Queue approach is tricky to get right
–  Makes sense only if disabling interrupts is really not an option

7

425 F16 3:37 ©J Archibald

static int iSeconds, iMinutes, iHours;

void interrupt vUpdateTime (void)
{

 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0;
 ++iHours;
 if (iHours >= 24)
 iHours = 0;
 }
 }
 !! Deal with HW

}

void vSetTimeZone (int iZoneOld, int iZoneNew)
{

 int iHoursTemp;

 /* Get current hours */
 disable();
 iHoursTemp = iHours;
 enable();

 !! adjust iHoursTemp for new time zone
 !! adjust for daylight savings time also

 /* save the new hours value */
 disable();
 iHours = iHoursTemp;
 enable();
}

Code based on Figure 4.17

Problem 4.1: Does this approach avoid a shared data problem?

425 F16 3:38 ©J Archibald

Problem 4.2: The code below has a shared data bug.

static long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight(void)
{

 return (lSecondsToday);
}

(a) How far off can return value of function
be if sizeof(long) is 32 and word size is 16
bits?

(b) How far off can return value of function
be if sizeof(long) is 32 and word size is 8
bits?

425 F16 3:39 ©J Archibald

Problem 4.3: What additional bug lurks in this code, even
if registers are 32 bits in length?

static long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight(void)
{

 return (lSecondsToday);
}

What can happen if system has another
interrupt that is higher priority than timer
interrupt for vUpdateTime and that calls
lSecondsSinceMidnight?

425 F16 3:40 ©J Archibald

Problem 4.5: The task and interrupt code
share the fTaskCodeUsingTempsB
variable.

Is the task’s use of this variable
(fTaskCodeUsingTempsB) atomic?
Does it need to be atomic for the code to
work correctly?

static int iTemperaturesA[2], iTemperaturesB[2];
static BOOL fTaskCodeUsingTempsB = FALSE;
void interrupt vReadTemperatures (void)
{

 if (fTaskCodeUsingTempsB)
 {

 iTemperaturesA[0] = !! read in value from HW
 iTemperaturesA[1] = !! read in value from HW
 }
 else
 {
 iTemperaturesB[0] = !! read in value from HW
 iTemperaturesB[1] = !! read in value from HW
 }

}

void main (void)
{

 while (TRUE)
 {
 if (fTaskCodeUsingTempsB)
 if (iTemperaturesB[0] != iTemperaturesB[1])
 !! Set off howling alarm;
 else
 if (iTemperaturesA[0] != iTemperaturesA[1])
 !! Set off howling alarm;
 fTaskCodeUsingTempsB = !fTaskCodeUsingTempsB;

 }
}

425 F16 3:41 ©J Archibald

int iQueue[100];
int iHead = 0; /* place to add next item */
int iTail = 0; /* place to read next item */
void interrupt SourceInterrupt(void)
{
 if ((iHead+1 == Tail) || (iHead == 99 && iTail == 0))
 { /* if queue is full, overwrite oldest */
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 }
 iQueue[iHead] = !!next value;
 ++iHead;
 if (iHead==100)
 iHead = 0;
}

void SinkTask(void)
{
 int iValue;
 while (TRUE)
 if (iTail != iHead)
 { /* if queue has entry, process it */
 iValue = iQueue[iTail];
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 !! Do something with iValue;
 }
}

Problem 4.6: where is “very nasty bug”?

Code from Figure 4.18

425 F16 3:42 ©J Archibald

int iQueue[100];
int iHead = 0; /* place to add next item */
int iTail = 0; /* place to read next item */
void interrupt SourceInterrupt(void)
{
 if ((iHead+1 == Tail) || (iHead == 99 && iTail == 0))
 { /* if queue is full, overwrite oldest */
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 }
 iQueue[iHead] = !!next value;
 ++iHead;
 if (iHead==100)
 iHead = 0;
}

void SinkTask(void)
{
 int iValue;
 while (TRUE)
 if (iTail != iHead)
 { /* if queue has entry, process it */
 iValue = iQueue[iTail];
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 !! Do something with iValue;
 }
}

Problem 4.6: where is “very nasty bug”?

Code from Figure 4.18

Scenario 1.
Queue is full, say, iHead=20,iTail=21
Task about to read iQueue[iTail], value
 21 already in register
Interrupt occurs: code sets iHead to 21,
 iTail to 22
Task reads iQueue[21] which is newest
 (rather than oldest) entry

8

425 F16 3:43 ©J Archibald

int iQueue[100];
int iHead = 0; /* place to add next item */
int iTail = 0; /* place to read next item */
void interrupt SourceInterrupt(void)
{
 if ((iHead+1 == Tail) || (iHead == 99 && iTail == 0))
 { /* if queue is full, overwrite oldest */
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 }
 iQueue[iHead] = !!next value;
 ++iHead;
 if (iHead==100)
 iHead = 0;
}

void SinkTask(void)
{
 int iValue;
 while (TRUE)
 if (iTail != iHead)
 { /* if queue has entry, process it */
 iValue = iQueue[iTail];
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 !! Do something with iValue;
 }
}

Problem 4.6: where is “very nasty bug”?

Code from Figure 4.18

Scenario 2.
Queue is full, iHead=98,iTail=99
Task executes ++iTail (so iTail=100)
Back-to-back interrupts are executed.
Start of first: iHead=98, iTail=100
End of first: iHead=99, iTail=100.
End of second: iHead=0, iTail=101

iTail is never reset, increases w/o limit

425 F16 3:44 ©J Archibald

Chapter 5: Software architectures

•  Recap: important ideas in real-time code
–  ISRs: scheduled by hardware

–  Task code: scheduled by software
•  Similar to Linux “process” in this regard

–  Response time constraints

–  Simplicity vs. complexity

•  For any given application, how should code be organized?
–  What alternative organizations exist?

425 F16 3:45 ©J Archibald

Choosing a software architecture:
key factors

•  How much control you need over system response time
–  Absolute response time requirements

–  Other processing requirements, including lengthy computations

•  How many different events you must respond to
–  Each with possibly different deadlines and priorities

•  In short: what does the system need to do?

425 F16 3:46 ©J Archibald

Software architectures

•  Event handlers are procedures (typically written in C) that
do the “work” to respond to events.

•  The architecture determines
1.  how the event is detected, and
2.  how the event handler is called.

Handlers Events Architecture

425 F16 3:47 ©J Archibald

Architecture 1: Round-robin
No interrupts involved

while(1)
{
 if (event)

 handle_event();
}

while(1)
{
 if (event1)

 handle_event1();
 if (event2)

 handle_event2();
 ...
 if (eventn)

 handle_eventn();
}

One Event Multiple Events

This approach is typically called polling.
425 F16 3:48 ©J Archibald

Characteristics of round-robin

•  Priorities available:
–  None: actions are all equal; each handler must wait its turn.

•  Disadvantages:
–  Worst-case response time one full iteration of loop (possibly handling

all other events first).
–  Worst-case response time for every event is bad if any single event

requires lengthy processing.
–  System is fragile: adding a single new event handler may cause

deadlines to be missed for other events.
•  Advantage:

–  Simplicity: really just a single task, no shared data, no ISRs

9

425 F16 3:49 ©J Archibald

How to decrease response time?

while(1)
{
 if (eventA)

 handle_eventA();
 if (eventB)

 handle_eventB();
 if (eventC)

 handle_eventC();
 if (eventD)

 handle_eventD();
}

while(1)
{
 if (eventA)

 handle_eventA();
 if (eventB)

 handle_eventB();
 if (eventA)

 handle_eventA();
 if (eventC)

 handle_eventC();
 if (eventA)

 handle_eventA();
 if (eventD)

 handle_eventD();
}

How can I reduce the response
time for event A?

425 F16 3:50 ©J Archibald

Applicability of round-robin

•  Example from text: digital multimeter
–  Few input devices, few events to respond to
–  Response time constraints not demanding
–  No lengthy processing required

•  Author’s conclusion (page 119):

“Because of these shortcomings, a round-robin architecture is
probably suitable only for very simple devices such as digital
watches and microwave ovens and possibly not even for these.”

425 F16 3:51 ©J Archibald

Architecture 2:
Round-robin with interrupts

•  To single polling loop, add interrupts.
–  ISRs complete initial response.

–  Remainder done by functions called in loop.

–  ISR sets flag to indicate that processing is required.

•  Offers greater flexibility:
–  Time-critical processing can be in ISR.

–  Longer-running code can be in handlers.

425 F16 3:52 ©J Archibald

Round-robin with interrupts

while(1)
{
 if (flagA) {

 flagA = 0;
 handle_eventA();

 }
 if (flagB){

 flagB = 0;
 handle_eventB();

 }
 if (flagC){

 flagC = 0;
 handle_eventC();

 }
}

ISR_A {
 !! do some A stuff
 flagA = 1;

}
ISR_B {
 !! do some B stuff

 flagB = 1;
}
ISR_C {

 !! do some C stuff
 flagC = 1;

}

Work is split between
task code and ISRs.

425 F16 3:53 ©J Archibald

Example: communications bridge

Communication
Link A

(unencrypted)

Communication
Link B (encrypted)

What is time critical?
•  Not losing data
•  Maintaining good throughput

Assume interrupts occur:
•  When data arrives
•  When link clear to send

Constraints

ISR actions:
•  Buffer data on arrival
•  Set flag when clear to send

Operations within main loop:
•  Encrypt buffered data from Link A
•  Decrypt buffered data from Link B
•  Send data on Link A
•  Send data on Link B

Design

encrypt

decrypt

425 F16 3:54 ©J Archibald

Characteristics of
round-robin with interrupts

•  Priorities available:
–  Interrupts are serviced in priority order.
–  All handlers have equal priority: none more important than the others.

•  Worst-case response time
–  For ISR: execution time of higher priority ISRs (if any)
–  For handler: sum of execution of all other handlers + interrupts

•  Advantages:
–  Work performed in ISRs has higher priority than code in main loop.
–  ISR response time stable through most code changes.

•  Disadvantages:
–  ISRs and handlers will share data, shared data problems will appear!
–  Handler response time not stable when code changes.

10

425 F16 3:55 ©J Archibald

Architecture 3:
Function-queue scheduling

ISR_A
{ !! do some work relating to A

 queue_put(handle_eventA);
}

ISR_B
{ !! do some work relating to B

 queue_put(handle_eventB);
}

while(1)
{
 while (queue_empty()); /* wait */
 task = get_queue();
 (*task); /* = task() */
}

Work split
between ISR and
task code.

Order of tasks is
dynamic.

Queue can be
FIFO or sorted by
priority.

425 F16 3:56 ©J Archibald

Characteristics of
Function-queue scheduling

•  Priorities available:
–  Interrupts are serviced in priority order
–  Tasks can be placed in queue and run in priority order

•  Worst-case response time for highest-priority task
–  Scenario: just started executing another task, must wait for it to finish
–  Delay = longest task time + execution time for ISRs

•  Advantages:
–  Improved response-time stability when code changes

•  Disadvantages:
–  Some added complexity from function queue

425 F16 3:57 ©J Archibald

Architecture 4:
Real-time operating system (RTOS)

•  Work is split between ISRs and tasks.
•  Tasks are prioritized and run by a scheduler.

–  Scheduler always picks highest-priority ready task to run.
–  If higher-priority task becomes ready, lower-priority task is preempted.

•  Tasks block when waiting for events, resources.
–  ISRs can cause tasks to become unblocked.
–  Tasks can delay themselves for fixed time intervals.

•  RTOS contains code to
–  Create tasks, block and unblock tasks, schedule tasks, allow tasks and

ISRs to communicate, etc.

425 F16 3:58 ©J Archibald

RTOS architecture

RTOS

TaskA

TaskB

TaskC

ISR for
Event 1

ISR for
Event 2

ISR for
Event 3

. . .
. . .

425 F16 3:59 ©J Archibald

RTOS characteristics
•  Priorities available

–  Interrupts are serviced in priority order
–  Tasks are scheduled in priority order; lower priority tasks preempted

•  Worst-case response time for highest-priority task
–  Sum of ISR execution times (since other tasks preempted)

•  Advantages:
–  Stability when code changes (e.g. adding a lower-priority task)
–  Many choices of commercial RTOS available

•  Disadvantages:
–  Runtime overhead of RTOS
–  Software complexity (some in RTOS, some in using RTOS correctly)

Non-trivial multi-threaded programs are incomprehensible to humans.
 Edward A. Lee

425 F16 3:60 ©J Archibald

Selecting an architecture

1.  Select the simplest architecture that will meet current and future
response time requirements.

2.  If application has difficult response-time requirements, lean toward
using an RTOS:

•  Many to choose from, debugging support, libraries, etc.

3.  Consider constructing hybrid architecture – examples:

•  RTOS where one task does polling

•  Round robin with interrupts: main loop polls slower HW directly

