static int iTemperatures[2];
rrupt vReadTemperatures (void)

iTemperatures[0] = /! read in value from HW
iTemperatures[1] = !! read in value from HW

Data is often shared because it is undesirable to have ISRs do all the }
work — they would take too long to run. void main (void)
{

— ISRs typically “hand off” some of the processing to task code. int iTemp0, iTemp1;
— This implies shared variables or communication between the ISR and the r'h“e (TRUE)

related task. iTemp0 = iTemperatures[0];
Lab 3 simpler (in part) because we don’t have to worry about this: the

task and interrupt code are unrelated.

static int iTemperatures[2];
rrupt vReadTemperatures (void)

iTemperatures[0] = !/ read in value from HW
— Tt is never called from task code; when will it run? iTemperatures[1] = !! read in value from HW
}

— How do we connect this ISR with its interrupt?
* The main routine is an infinite loop.
— Rarein jonal code, in embedded systems. int iTemp, iTemp1;

. . . while (TRUE)
— Compares two temperatures and raises alarm if they ever differ. {

void main (void)

. iTemp0 =i Suppose interrupt
« The ISR updates the temperature variables. {Temp? = iTemperatures{1]: occurs here
if (iTemp0 != iTemp1)
1! Set off howling alarm;

— Assume interrupt asserted at
« regular intervals, based on timer, or

« Say, 80 at one reading, 81 at the next.
Interrupt occurs between reads in task code.
Test in main() compares old value with new value.
— Result: (false) alarm set off, evacuations begin.
« To prevent, programmer must carefully analyze all code Only change to code:

« global array values

_ A q] S
Is there a point in code where an interrupt can mess things up? {esieddireotly

The hard part:
— Does the bug appear consistently?
— Would it turn up during testing?

ax,[iTemperatures+0]
ax,[iTemperatures+2]
okay
; set off alarm
okay:

Only real solution: write bug-free code.
— Think long and hard about correctness of code at all levels.

— Stick with basic principles that work.
— But still do lots of testing!

— An interrupt can occur between the two memory reads. (Will it?)

— The code can trigger a false alarm.
« Ifyes, the code may work for this CPU, but not others.
— Best if the code we write will work on all target platforms.

ax,[iTemperatures+0]
ax,[iTemperatures+2]

« Overhead for inline assembly method
—cli

« Which method gives best performance?
— Is the difference significant?

* Which method results in more portable code?

— Selective masking would reduce disruption to rest of system. dynamic access patterns to that data.
« Considerations: — It’s plenty hard for humans to do — even for developer who understands the
code.
« No existing tools are clever enough to determine automatically when
interrupts need to be disabled.

— Interrupts are disabled only briefly.

— Increasing response time by 1-2 instructions is not a big deal.

— The overhead of disabling single interrupt is generally higher;
details are platform dependent.

 Disabling all interrupts is a simple, one-size-fits-all solution.

interrupted, i.e., if it can be guaranteed to execute as an

5 . Lo ion?
unbreakable unit. ‘What are the natural atomic units of execution’

— Single machine instructions only.

. . . . — A line of C-code rarely maps to a single instruction. (If a line of your C-code
* Critical Section: a section of code that must be atomic for) Bttt (o g e ettt st

correct operation. » How can we make portion of code atomic?
— Principal approach: disabling interrupts at start, enable interrupts at end.
— We’ll consider alternative approaches later.

A very bad “solution”!

How far off can
return value be?

A better solution | The best solution

static long int ISecondsToday;
void interrupt vUpdateTime (void)
function: interrupts will be re-enabled and should not be.
— Some of you will experience this in your code this semester. ++ISecondsToday;
if (ISecondsToday == 60 * 60 * 24)

* How is “best” solution an improvement? ISecondsToday = 0L;

— Re-enables interrupts only if they were on in first place.)
— Allows function with critical section to be called from normal code
and from other critical sections. long ISecondsSinceMidnight (void)

return ISecondsToday;

Does the problem go away?
— No, just more subtle: accessing a single variable is not necessarily atomic.

— Example: accessing a long on 8086 takes multiple instructions; can be
interrupted between 16-bit accesses. (How far off can it be?)

* Bottom line: even with code accessing a single shared variable, you’re
usually better off disabling interrupts.
— Code more portable to new target platforms.

3.

4,

But what will a good optimizing compiler do with this code?
— Read from memory just once, keep the value in a register.
— Compiler sees nothing in code to modify value between the two reads.
Solution?
— Use volatile keyword: forces compiler to read memory every time variable is
accessed and to avoid “obvious” optimizations.
— Tells compiler that variable can be changed by something unseen.

Handler 1

Execution time of higher-priority ISRs?

. Assign priorities carefully.

. Keep all ISRs lean and mean.
Overhead of hardware response?

. Fixed when you select the processor.
Time to save context, run handler?

. Size of context depends on number of registers — fixed for CPU

. Handler efficiency: good coding

static volatile long int ISecondsToday;
void interrupt vUpdateTime (void)

:;ISecondsToday;
if (ISecondsToday == 60 * 60 * 24)
ISecondsToday = OL;

}
long ISecondsSinceMidnight(void)
{

long IReturn;

IReturn = ISecondsToday;
while (IReturn != ISecondsToday)

IReturn = ISecondsToday;
return IReturn;

BYU }

The longest period of time that interrupts are disabled

2. The total time required to execute all ISRs + handlers of higher priority
The time for hardware to stop what it is doing, save critical state, and
start executing the ISR for that interrupt

4. The time for the ISR+handler to save the context and then do the work

that we consider to be the “response”

— Unlikely to be true in any implementation, but added realism buys little.

* CPU respond to asserted, enabled interrupt before starting next
instruction
* Overhead of hardware response on 8086:
— Finish current instruction
— Push 3 words on stack, read 2 words from interrupt vector table

Only longest critical section need concern us: no way to transition to another
‘without hardware responding to pending interrupt.
— Hard priority level assigned to relevant interrupt
— Run length of higher-priority ISRs + handlers
« Just one time through each, or multiple runs?
— Run length of this ISR + handler to point of “response”
« How important is such a guarantee?

— Critical in real world, less so in 425 labs

* Does this work?
— Global flag does not change while temperatures are being read in task code,
especially at critical point between the two reads.
— Values tested in task code are always corresponding pair — no way for ISR to

change them at wrong time while reading.

« What are disadvantages?

* Queue management: — When tail is incremented, the write (not necessarily the increment)

to tail must be atomic.
 Otherwise reader and writer could see different pictures of shared array.
« The operation is generally atomic, but not on all platforms.

— Queue full: head+2 == tail (2 slots used/sample)
— Queue empty: head == tail
« Advantage: queue decouples the data arrival rate (possibly bursty) from

the data processing rate. ¢ Opverall assessment:

— Queue approach s tricky to get right

— Processi; ite it be at least it as th ival rate.
essing rate must be at feast as great as the average arrival rai — Makes sense only if disabling interrupts is really not an option

int iHead = 0; /* place to add next item */
inti ; /" place to read next item */
void interrupt Sourcelnterrupt(void)

if ((Head+1 == Tail) || (iHead == 99 && ITail = 0)
{I*if queue is full, overwrite oldest */
++iTail;
if (iTail == 100)
iTail = 0;

}
iQueue[iHead] = /Inext value;

void SinkTask(void)
{

int iValue;
while (TRUE)
if (iTail 1= iHead)
{ I"if queue has entry, process it */
iQueue[iTaill;

if (iTail == 100)
iTail = 0;
11 Do something with iValue;

—
[100];
0; I* place to add next item */
; I place to read next item */
rrupt Sourcelnterrupt(void)

if ((Head+1 == Tail) || (iHead == 99 && ITail = 0)
{ I*if queue s full, overwrite oldest */

++iTail;
if (iTail == 100)
iTail = 0;

}
iQueue[iHead] = /lnext value;
++iHead;
if (iHead==100)
iHead = 0;
}

void SinkTask(void)
{

int iValue;
while (TRUE)
if (iTail 1= iHead)
{ I*if queue has entry, process it */

Scenario 1.

Queue is full, say, iHead=20,iTail=21

Task about to read iQueueliTail], value
21 already in register

Interrupt occurs: code sets iHead to 21,
iTail to 22

iValue = iQueue[iTail]; - Task reads iQueue[21] which is newest

44T,
if (iTail == 100)
iTail = 0;
11 Do something with iValue;

(rather than oldest) entry

—
int iQueue[100];

int iHead = 0; /* place to add next item */
intiTail =0; /* place to read next item */
void interrupt Sourcelnterrupt(void)

if ((Head+1 == Tail) || (iHead == 99 && iTail = 0)
{ I*if queue is full, overwrite oldest */
++iTail;
if (iTail == 100)
iTail = 0;

}nuou-[lﬂaad] = linext value;
++iHead;
ad==100)
iHead = 0;
i Scenario 2.
void SinkTask(void) Queue is full, iHead=98,iTail=99
Task executes ++iTail (so iTail=100)
int iValue; Back-to-back interrupts are executed.
TR Start of first: iHead=98, iTail=100
{ 1*if queu has entry, process it*/ End of first: iHead=99, iTail=100.
End of second: iHead=0, iTail=
—
iTail is never reset, increases w/o li

if il

— Absolute response time requirements
— Otherp i i including lengthy ion

* How many different events you must respond to
— Each with possibly different deadlines and priorities

+ In short: what does the system need to do?

BYU

This approach is typically called polling.

— Task code: scheduled by software

« Similar to Linux “process™ in this regard
— Response time constraints
— Simplicity vs. complexity

« For any given application, how should code be organized?

— What alternative organizations exist?

-,
.Q o

¢ The architecture determines
1. how the event is detected, and

« Disadvantages:

— Worst-case response time one full iteration of loop (possibly handling
all other events first).

— Worst-case response time for every event is bad if any single event
requires lengthy processing.

— System is fragile: adding a single new event handler may cause
deadlines to be missed for other events.
* Advantage:
— Simplicity: really just a single task, no shared data, no ISRs

— ISRs complete initial response.
— Remainder done by functions called in loop.

— Response time constraints not demanding
— No lengthy processing required
« Author’s conclusion (page 119):

— ISR sets flag to indicate that processing is required.

« Offers greater flexibility:
— Time-critical processing can be in ISR.

— Longer-running code can be in handlers.

Communication
Link A
(unencrypted)

ISR actions:
* Buffer data on arrival

« Set flag when clear to send
- Operations within main loop:
« Encrypt buffered data from Link A
De mt buffered data from in B

Lm"z::lm) « Worst-case response time

— For ISR: execution time of higher priority ISRs (if any)
— For handler: sum of execution of all other handlers + interrupts
+ Advantages:
— Work performed in ISRs has higher priority than code in main loop.
— ISR response time stable through most code changes.

Disadvantages:

ISR A
{ !'! do some work relating to A

between ISR and queue_put (handle_eventa) ;
task code.

ISR B
Order of tasks is { !! do some work relating to B
dynamiCA queue_put (handle_eventB) ;

}

Queue can be while (1)
FIFO or sorted by {

.. while (queue_empty()); /* wait */
priority. task = get queue();

(*task) ; /* = task() */
}

— Scheduler always picks highest-priority ready task to run.
— If higher-priority task becomes ready, lower-priority task is preempted.

« Tasks block when waiting for events, resources.

— ISRs can cause tasks to become unblocked.

— Tasks can delay themselves for fixed time intervals.
* RTOS contains code to

— Create tasks, block and unblock tasks, schedule tasks, allow tasks and
ISRs to communicate, etc.

« Worst-case response time for highest-priority task
— Sum of ISR execution times (since other tasks preempted)
* Advantages:
— Stability when code changes (e.g. adding a lower-priority task)
— Many choices of commercial RTOS available
« Disadvantages:
— Runtime overhead of RTOS
— Software complexity (some in RTOS, some in using RTOS correctly)

= ipts are serviced in priorif
— Tasks can be placed in queue and run in priority order

« Worst-case response time for highest-priority task
— Scenario: just started executing another task, must wait for it to finish
— Delay = longest task time + execution time for ISRs

+ Advantages:

— Improved response-time stability when code changes

« Disadvantages:

ISR for
Event 2

ISR for
Event 3

response time requirements.
2. Ifapplication has difficult response-time requirements, lean toward
using an RTOS:
+ Many to choose from, debugging support, libraries, etc.
3. Consider constructing hybrid architecture — examples:
+ RTOS where one task does polling
+ Round robin with interrupts: main loop polls slower HW directly

10

