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7.1: Communication between tasks 

•  What other forms of communication does an RTOS usually offer 
besides global data protected by semaphores? 

•  Three message-based options are described in the text: 
–  Queues 

–  Mailboxes 

–  Pipes 

•  Advantages, disadvantages of sending messages: 
+  Often easier than using semaphores and global data 

–  Creates new ways of inserting bugs into your system 
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void vLogError (int iErrorType) 
{ 
    AddToQueue (iErrorType); 
} 
 
static int cErrors; 
 
void ErrorsTask (void) 
{ 
    int iErrorType; 
    while (FOREVER) 
    { 
        ReadFromQueue (&iErrorType); 
        ++cErrors; 
        !! Send cErrors, iErrorType out on network 
    } 
} 

/* RTOS queue function prototypes */ 
void AddToQueue (int iData); 
void ReadFromQueue (int *p_iData); 
 
void Task1 (void) 
{ 
    … 
    if (!! problem arises) 
        vLogError (ERROR_TYPE_X); 
     
    !! other things that need to be done soon 
    … 
} 
 
void Task2 (void) 
{ 
    … 
    if (!! problem arises) 
        vLogError (ERROR_TYPE_Y); 
 
    !! other things that need to be done soon 
    … 
} 

Tasks 1 & 2 are high priority tasks.  Sometimes they 
detect an error that needs to be reported via the 
network. A low priority task is assigned the job of 
network communication so that other tasks are not 
delayed.  (From Figure 7.1) 

Simple queue example 
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Queue functions in example 

•  Two reentrant functions: 
–  AddToQueue( ) 

•  Posts a message to a queue 

–  ReadFromQueue( ) 
•  Gets message from a queue 

•  Review: what is significance of them being reentrant? 
–  What is guaranteed? 

–  What does it allow you to do? 
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Queue functions: discussion 

•  Example is simplistic because it glosses over many important details.  
•  Consider these questions: 

–  Which queue will be used?  
–  Where is queue located in memory? 
–  How big is the queue? 
–  When and how was the queue allocated? 
–  What is C type of each message in queue? 
–  What if queue is empty when code requests next entry? 
–  What if queue is full when code tries to insert new message? 

Why make queue functions part of RTOS, and not just application code? 
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Queue usage example:  
Simptris (Lab 8) 

•  You write code to place pieces in simplified version of Tetris 
–  Appearance of each new piece is signaled by an interrupt 
–  Your code must calculate how to move piece given current board 
–  Single output port for movement commands; fixed communication delay 

•  Logical design approach:  
–  Tasks decide how to move each piece  
–  Separate task sends commands; blocks until communication channel clear 

•  Design questions: 
–  How does information about new piece get from ISR to placement tasks? 
–  How do commands get from placement task to communication task? 
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The pesky details 

•  Like semaphores, queues must be created and initialized before using 
•  The application code must specify which queue to use 

–  As with semaphores, application may have several queues  

•  Tricky: can RTOS queue functions work for queues with different sizes 
and types? 
–  RTOS records size of each queue, uses generic type for every entry 

–  Application code determines size, allocates memory to be used 

–  Each queue represented by a multilevel data structure 
•  Part managed by RTOS, part managed by application code 
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The pesky details 

•  Let’s revisit details not addressed in previous example: 
–  Which queue will be used?  
–  Where is queue located in memory? 
–  How big is the queue? 
–  When and how was the queue allocated? 
–  What is C type of each message in queue? 
–  What if queue is empty when code requests next entry? 
–  What if queue is full when code tries to insert new message? 
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•  Which queue will be used? 
–  Queue functions that create, pend, and post will refer to a specific queue via 

a unique variable in user code (similar to semaphores) 

•  Where is queue located? How big and how allocated? 
–  User code must declare array for each queue; must be “big enough”  
–  User code must inform RTOS about queue so it can be managed 

•  What is type of each queue entry? 
–  For maximum flexibility: typically a generic pointer (void *) 

•  Can be cast to point to anything user wishes 

–  But then what code must allocate/deallocate objects pointed to? 
•  As you might guess: not the RTOS. More on this in a moment… 

The pesky details 
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•  What happens on a read when queue is empty? 
–  Most common: calling task is blocked (like pending on semaphore).  
–  Many kernels offer two read function alternatives: 

•  Read from queue, block if empty 
•  Read from queue, return immediate error if empty 

•  What happens on write when the queue is full? 
–  Most common: function returns error 

•  User code must test for this return value.  But what to do then? 

–  Less common: block caller until space becomes available 
•  This version must never be called from interrupt code 

–  Neither approach an obvious winner 
•  Only sure-fire solution: make sure queue is big enough! 

The pesky details 
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Queue message type 

•  Across many applications using same RTOS, you may want to send 
integers, strings, floats, structs, etc. 

•  Solution: RTOS views all entries as the same generic type (void *) 
–  Queue is an array of pointers that RTOS manages 
–  Entries can be cast to anything (or point to anything) programmer wants 
–  Provides consistency for RTOS, flexibility for application code 

•  Responsibilities of application code: 
–  Correctly cast void pointers to actual types used in application 
–  Manage any objects that void pointers actually point to 
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Two code examples 

•  The first is simple: the message content is a single integer. The 
message is passed “by value” – integer content is in pointer field 
 

•  The second example is more complex: the message content is a short 
array. The message is passed “by reference” – pointer field contains 
address of array 
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/* Figure 7.2 More realistic use of a queue  */ 
 
/* RTOS queue function prototypes */ 
OS_EVENT *OSQCreate(void **ppStart, BYTE bysize); 
unsigned char OSQPost (OS_EVENT *pOse, void *pvMsg); 
void *OSQPend (OS_EVENT *pOse, WORD wTimeout, BYTE *pByErr); 
#define WAIT_FOREVER 0 
 
/* Global handle for message queue */ 
static OS_EVENT *pOseQueue; 
 
/* The data space for our queue (managed by RTOS) */ 
#define SIZEOF_QUEUE 25 
void *apvQueue[SIZEOF_QUEUE]; 
 
void main(void) 
{ 
    . . . 
    /* the queue gets initialized before tasks are started */ 
    pOseQueue = OSQCreate (apvQueue, SIZEOF_QUEUE); 
    . . . 
    !! Create Task1 
    !! Create Task2 
    … 
} 
 
void Task1(void) 
{ 
    . . . 
    if (!! problem arises) 
        vLogError(ERROR_TYPE_X); 
    !! Other things that need to be done soon. 
    . . . 
} 

void Task2(void) 
{ 
    . . . 
    if (!! problem arises) 
        vLogError(ERROR_TYPE_Y); 
    !! Other things that need to be done soon. 
    . . . 
} 
 
void VLogError(int iErrorType) 
{ 
    BYTE byReturn;   /* Return code from writing to queue */ 
    /* Write to queue.  Cast error type as void pointer */ 
    byReturn = OSQPost (pOseQueue, (void *) iErrorType); 
    if (byReturn != OS_NO_ERR) 
        !! Handle situation that arises when queue is full 
} 
 
static int cErrors; 
 
void ErrorsTask(void) 
{ 
    int iErrorType; 
    BYTE byErr; 
 
    while (FOREVER) 
    { 
        /* Cast value received back to int. No possible error, 
            so ignore byErr. */ 
        iErrorType = (int) OSQPend(pOseQueue, WAIT_FOREVER, &byErr); 
        ++cErrors; 
        !! Send cErrors and iErrorType out on network 
} 
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/* Figure 7.3 Passing pointers on queues */ 
 
/* Queue function prototypes */ 
OS_EVENT *OSQCreate (void **ppStart, BYTE bySize); 
unsigned char OSQPost (OS_EVENT *pOse, void *pvMsg); 
void *OSQPend (OS_EVENT *pOse, WORD wTimeout, BYTE *pByErr); 
#define WAIT_FOREVER 0 
 
static OS_EVENT *pOseQueueTemp; 
 
void vReadTemperaturesTask (void)  { 
    int *pTemperatures; 
    while (TRUE)  { 
        !! Wait until time to read next temperature 
        /* get a new buffer for new temperature set */ 
        pTemperatures = (int *) malloc(2*sizeof *pTemperatures); 
        pTemperatures[0] = !! read in value from hardware 
        pTemperatures[1] = !! read in value from hardware 
        /* add pointer to the new temperatures to the queue */ 
        OSQPost (pOseQueueTemp, (void *) pTemperatures); 
    } 
} 
 
void vMainTask (void)  { 
    int *pTemperatures; 
    BYTE byErr; 
 
    while (TRUE)  { 
        pTemperatures = (int *) OSQPend(pOseQueueTemp, WAIT_FOREVER, &byErr); 
        if (pTemperatures[0] != pTemperatures[1]) 
            !! set off howling alarm 
        free (pTemperatures); 
    } 
} 

Dynamic memory allocation 
here is not ideal.  
How else could this be done? 

Not shown (but essential): 
•  allocation of queue 
•  call to OSQCreate 
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Remember, void * is a wildcard type.  Any pointer can be cast 
to a void * and back again without loss of information. 

Why do it this way? What does RTOS deal with?  
What does application code deal with? 

actual queue in  
application code queue struct 

YKQ struct (YAK) 
OSEvent (µC/OS) 

General queue framework (YAK + µC/OS) 

queue pointer 

RTOS manages this array; 
each entry a message ptr. 

Only user code knows  
what msg ptrs point to 

length 

. . . 

YKQ * (YAK) 
OSEvent * (µC/OS) 
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General queue framework (YAK + µC/OS) 

RTOS manages these; never  
dereferences void pointers  

in message array. 

User code allocates this  
and calls create queue function; 
never directly references array. 

 
 
 
 
 
 
 
 

void ** 
void * 

void * 

void * 

void * 

void * 

void * 

void * 
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? 
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actual queue in  
application code queue struct 

YKQ struct (YAK) 
OSEvent (µC/OS) 

queue pointer 

RTOS manages this array; 
each entry a message ptr. 

Only user code knows  
what msg ptrs point to 

length 

User code must allocate 
and manage these – if used. 

User code allocates 
and uses as handle. 

. . . 

YKQ * (YAK) 
OSEvent * (µC/OS) 
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YAK: Division of responsibilities 
•  The application code 

–  Defines the YKQ* “handle” 
–  Allocates the actual queue (array of void *) 
–  Initializes the handle with call to YKQCreate 

(passes queue address, size) 
–  Calls YKQPend to get next entry in specified 

queue 
–  Calls YKQPost to put next entry in specified 

queue 
–  Allocates/frees whatever the queue entries 

point to if they are pointers. 

•  It does not 
–  Reference contents of YKQ struct 
–  Know any management details of queue 
–  Reference queue contents directly 

•  The RTOS 
–  Has available pool of YKQ structs 
–  Returns ptr to new (initialized) YKQ struct on 

each call to YKQCreate 
–  Puts entry in the named queue for each call to 

YKQPost 
–  Returns entry from named queue for each call 

to YKQPend, blocks caller if empty  

•  It does not 
–  Define handle for queue 
–  Allocate the queue (array of void *) 
–  Know how to interpret entries in the queue 
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General semaphore framework (YAK + µC/OS) 

RTOS manages this; 
never accessed directly  

by user code. 

 
 
 
 
 
 
 
 

value 

semaphore struct 

YKSEM struct (YAK) 
OSEvent (µC/OS) 

semaphore pointer 

User code allocates 
and uses as handle. 

. . . 

YKSEM * (YAK) 
OSEvent * (µC/OS) 
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#include "clib.h" 
#include "yakk.h"                                      /* contains kernel definitions */ 
#include "lab6defs.h"                                /* contains user’s definitions */ 
 
#define TASK_STACK_SIZE   512            /* stack size in words */ 
#define MSGQSIZE                  10 
 
struct msg MsgArray[MSGARRAYSIZE];  /* buffers for message content */ 
 
int ATaskStk[TASK_STACK_SIZE];           /* a stack for each task */ 
int BTaskStk[TASK_STACK_SIZE]; 
int STaskStk[TASK_STACK_SIZE]; 
 
int GlobalFlag; 
 
void *MsgQ[MSGQSIZE];                        /* space for message queue */ 
YKQ *MsgQPtr;                                        /* actual name of queue */ 

/* File: lab6defs.h */ 
 
#define MSGARRAYSIZE  20 
 
struct msg  
{ 
    int tick; 
    int data; 
}; 

YAK queue code (from Lab 6) 
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void ATask(void)       /* processes data in msgs */ 
{ 
    struct msg *tmp; 
    ... 
    while (1) 
    {   
        /* get next msg */ 
        tmp = (struct msg *) YKQPend(MsgQPtr);      
        ... 
    } 
} 
 
void main(void) 
{ 
    YKInitialize( ); 
 
    /* create queue, at least one user task, etc. */ 
    GlobalFlag = 0; 
    MsgQPtr = YKQCreate(MsgQ, MSGQSIZE); 
    YKNewTask(STask, (void *) &STaskStk[TASK_STACK_SIZE], 30); 
    YKRun( ); 
} 
 
/* tickhandler calls YKQPost(MsgQPtr, (void *) &(MsgArray[next])) */ 
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Mailboxes and pipes 

•  Similar to queues. 
–  Tasks can use them to communicate with each other 

–  Functions provided to create, write to, and read from 

–  Both must be created before they are used 

•  Details of both are RTOS dependent 
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Typical mailboxes 

•  How do mailboxes differ from queues? 
–  RTOS may restrict the number of entries 

•  In some cases, a single entry per mailbox is allowed (µC/OS) 

•  In some cases, a fixed number of total messages in system (across all 
mailboxes) cannot be exceeded at any point in time 

–  RTOS may prioritize message order 
•  Messages will come out in priority order, regardless of order in which 

they were inserted 
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Pipes 

•  How do pipes differ from queues? 
–  Typically allow messages of varying length 

•  In contrast, messages in queues and mailboxes have fixed length 

–  Usually byte oriented 
•  Writing task places some number of bytes into one end of the pipe 

•  Reading task reads some number of bytes from other end of pipe 

–  Writer and reader must agree how to parse variable-length messages 
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Which is best choice? 

•  For queues, mailboxes, and pipes the details vary, so developer must 
study RTOS documentation carefully 
–  In YAK, we will implement queues 

–  Mailboxes and pipes would not be hard to add 

•  Both functionality and performance are important  
–  Vendor documentation usually gives information about memory 

requirements and runtime overhead 

–  Observation: hard to get comparable information for Windows, Linux, etc.  
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Potential pitfalls 

•  Possible to use wrong queue, mailbox, or pipe 

•  Possible for reader and writer to interpret message content differently 

–  Void pointers can be cast incorrectly or inconsistently; compiler won’t 
catch it 

•  Possible to write code with multiple readers (tasks that empty the 
queue), but tricky to manage 
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Compiler will catch this error... Compiler cannot help you here… 
static OS_EVENT *pOseQueue; 
 
void TaskA (void) 
{ 
    int i; 
    ... 
    /* put an integer in the queue */ 
    OSQPost (pOseQueue, (void *) i); 
    ... 
} 
 
void TaskB (void) 
{ 
    char *p_ch; 
    BYTE byErr; 
    ... 
    /* expect to get a char ptr */ 
    p_ch = (char *) OSQPend(pOseQueue,  
        FOREVER, byErr); 
    ... 
} 

/* function that takes a ptr as parameter */ 
void vFunc (char *p_ch); 
 
void main (void) 
{ 
    int i; 
    ... 
    /* call function with an int */ 
    vFunc (i); 
    ... 
} 
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Other pitfalls 

•  Running out of space in the queue.   

–  No good option if queue too small: lose data or block posting task. 

–  Designer should ensure that queue is big enough to handle the highest 

burst-rate of data. 

•  Passing pointers can result in shared data problems that are more 

subtle than previous examples we’ve considered. 

–  Consider example on next slide 
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What’s wrong with this code? 
/* Queue function prototypes */ 
OS_EVENT *OSQCreate (void **ppStart,  
          BYTE bySIZE); 
unsigned char OSQPost (OS_EVENT *pOse,    
          void *pvMsg); 
void *OSQPend (OS_EVENT *pOse,  
          WORD wTimeout, BYTE *pByErr); 
#define WAIT_FOREVER 0 
static OS_EVENT *pOseQueueTemp; 
 
void vReadTemperaturesTask (void) 
{ 
    int iTemperatures[2]; 
    while (TRUE) 
    { 
        !! Wait until time to read next temp; 
        iTemperatures[0] = !! read value from HW; 
        iTemperatures[1] = !! read value from HW; 
        /* add to queue ptr to new temps */ 
        OSQPost (pOseQueueTemp,  
                  (void *) iTemperatures); 
    } 
} 

void vMainTask (void) 
{ 
    int *pTemperatures; 
    BYTE byErr; 
 
    while (TRUE) 
    { 
        pTemperatures = (int *)  
                OSQPend(pOseQueueTemp,   
                WAIT_FOREVER, &byErr); 
        if (pTemperatures[0] != pTemperatures[1]) 
            !! set off howling alarm; 
    } 
} 
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Queue details revisited 

Problem: The void pointer for every queue entry 
points to same message buffer in user code! 

 
 
 
 
 
 
 
 

void ** 
void * 

void * 

void * 

void * 

void * 

void * 

void * 

? 

actual queue in  
application code queue struct 

YKQueue struct (YAK) 
OSEvent (µC/OS) 

queue pointer 

RTOS manages this array; 
each entry a message ptr. 

length 

. . . 

YKQueue * (YAK) 
OSEvent * (µC/OS) 
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7.2: Timer Functions 

•  Delaying a task is a typical RTOS service. 
–  As in YAK, parameter is usually number of system clock ticks. 

–  Usually not in seconds or other standard units of time. 

•  Timer that triggers tick interrupts is often called the heartbeat timer. 

•  Frequency of heartbeat timer platform dependent.  
–  In many systems the frequency is programmable. 

–  Implementation details are usually encapsulated in system functions, 
simplifying task of application developer. 

•  Use of timer like this is not unique to embedded systems 
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Example: Linux interval timer 
•  Consider program that spins in loop, reading system clock 

–  Execution pattern can be detected: can you explain what we see below? 

Activity Periods, Load = 1 

0 10 20 30 40 50 60 70 80 
Time (ms) 

Active 
Inactive 

Activity Periods, Load = 2 
Active 
Inactive 

0 10 20 30 40 50 60 70 80 
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Timing accuracy 

•  How accurate can a delay mechanism be that is based on the heartbeat 
or interval timer?  

•  Jitter: variation and uncertainty in the actual interval from the time a 
task calls delay to when it actually runs again. 

•  What bounds can we establish? 

–  How long can it be? 

–  How short can it be? 

•  Is jitter unavoidable? 
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Time 

System timer interrupts 1 system tick 

task calls 
YKDelayTask(3) 

task unblocked by 
YKTickHandler task calls 

YKDelayTask(3) 
task unblocked by 

YKTickHandler 

Timing example 

•  Scenario: 
–  Task calls YKDelayTask(3) each time through loop. 
–  Assume: length of delay = time until unblocked. 
–  As shown below, the actual delay length varies. 

~2.9 ticks ~2.1 ticks 
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Timing uncertainty 

•  Observation from previous slide: 
–  We don’t know when in tick interval that YKDelayTask is called. 

–  On 3rd clock tick, RTOS will change state of task to Ready. 

•  If task calls YKDelayTask(n), what can we guarantee that RTOS will do? 
–  Unblock task between n and n-1 tick intervals later. 

•  When will task run? 
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Jitter 

•  How much delay from unblocking to running?  
–  Best case: It runs immediately after it is unblocked.  

–  Worst case: It experiences arbitrary delay because higher priority 
tasks and ISRs are executing.  

–  Depends on interrupt behavior, relative task priorities, state of other 
tasks, etc.  

•  What can designer do if this timing is not accurate enough?  

–  Start by reassigning task priorities, etc. 

–  No surprise: the problem belongs to user code, not the RTOS. 
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Increasing timing accuracy 

•  Options to consider: 
–  Increase frequency of heartbeat timer. 

•  Downside: this increases total overhead of tick ISR and handler. 

•  You’ve seen this while testing code with short tick intervals. 

–  Use special hardware timers. 
•  Common in embedded systems. 

•  Most microcontrollers come with one or more built-in timers.  

•  How do they work? 
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Using a timeout timer 

•  First, set the timer to desired delay value. 
•  Second, start timer. 

•  When timer expires (counts down to zero), an interrupt is generated. 
–  Just one interrupt at the end; no other CPU overhead until then. 

–  You write ISR/handler for that interrupt that takes actions you want.  

•  This approach results in very precise timing. 
–  Intervals are essentially any desired number of processor clock cycles. 

–  Active hardware timer unaffected by software loading, interrupts, etc. 
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Timers 

•  What if desired interval (in processor cycles) exceeds range of counter? 

–  Hardware often provides a programmable prescaler 

–  If value set to n, counter decremented once for each n cycles. 

•  What if you want more timers than hardware provides? 

–  Can create multiple software timers, all based on a single hardware timer. 

–  Set hardware timer to expire on first deadline of any SW timer. 

–  ISR/handler triggers actions for expired SW timer, updates all SW timers, 
and sets HW timer to expire when next SW timer expires.  

425 F18 6:38 ©J Archibald 

Configuring timers 
•  An RTOS typically runs on multiple platforms. 

–  Part of job of porting RTOS is programming heartbeat timer since this is 
microprocessor dependent. 

–  Commercial RTOS will come set up for your processor. 

•  If you use non-standard hardware timers, you may need to write: 
–  Timer setup procedure 
–  Timer ISR 

•  Often RTOS includes a board support package with 
–  Drivers for common hardware components, and  
–  Instructions and model code to help you create drivers for special HW 
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Other timing services 

•  Timeouts when blocking on semaphore, queue, or mailbox. 
–  My assessment: not easy to use  

•  If pend call times out, what should code do?  How to recover? 

–  Alternative approach:  

•  Use timeout as indicator of problem during design and testing; if it 
occurs, treat as design error and revise code. 

•  Example: if task can’t wait any longer for a semaphore, then rewrite 
using messages in queue instead of semaphore. 
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Timer callback functions 

•  A powerful and useful timing-related RTOS service. 
•  Let’s illustrate by first considering the timing needs of  

one application: code controlling a radio. 
–  To turn radio off, just cut power. 
–  To turn radio on, multiple steps required: 

•  Turn on power to basic radio hardware, then wait 12 ms. 
•  Set frequency of radio, then wait 3 ms. 
•  Turn on transmitter or receiver, and start using radio. 

 

•  How could we do this with timing mechanisms already discussed? 
–  Examples: tasks, task delay functions, hardware timers, etc. 

Perform action 

Wait precise interval 

Perform action 

Perform action 

Wait precise interval 
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Timer callback functions, cont. 

•  Basic idea: specified function will be called after specified delay 
•  Call to timer callback function identifies: 

–  Timer to use 
–  Delay value to initialize timer with 
–  Function to call, arguments to pass 

•  Very powerful and flexible; can simplify application code 
–  Let’s look at an example: source code for radio control 
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/* Message queue for radio task */ 
extern MSG_Q_ID queueRadio; 
 
/* Timer for turning the radio on */ 
static WDOG_ID wdRadio; 
 
static int iFrequency;   /* frequency to use */ 
 
void vSetFrequency (int i); 
void vTurnOnTxorRx (int i); 
 
void vRadioControlTask (void) 
{ 
    #define MAX_MSG 20 
    char a_chMsg[MAX_MSG + 1];  
    enum 
    { 
        RADIO_OFF, RADIO_STARTING, 
        RADIO_TX_ON, RADIO_RX_ON 
     } eRadioState;       /* state of the radio */ 
  
   eRadioState = RADIO_OFF; 
 
    /* create the radio timer */ 
    wdRadio = wdCreate( ); 

/* vRadioControlTask( ) continued */ 
while (TRUE) 
{ 
    /* find out what to do next */ 
    msgQReceive (queueRadio, a_chMsg, MAX_MSG,  
                               WAIT_FOREVER); 
    /* first char tells message type */ 
    switch (a_chMsg[0]) 
    { 
        case ‘T’: 
        case ‘R’: 
             /* turn on transmitter or receiver */ 
             if (eRadioState == RADIO_OFF) 
             { 
                  !! Turn on power to radio hardware 
                  eRadioState = RADIO_STARTING; 
                  /* get frequency from msg */ 
                  iFrequency = * (int *) &(a_chMsg[1]); 
                  /* take next step in 12 ms */ 
                  wdStart (wdRadio, 12, vSetFrequency,  
                                  (int) a_chMsg[0]); 
              } 
              else 
                   !! Handle error -- radio not off! 
              break; 

Figure 7.7a  Using timer callback function 
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    /* vRadioControlTask( ) continued */ 
    case ‘K’: 
        /* the radio is ready */ 
        eRadioState = RADIO_TX_ON; 
        !! do whatever is desired with radio 
        break; 
    case ‘L’: 
        /* the radio is ready */ 
        eRadioState = RADIO_RX_ON; 
        !! do whatever is desired with radio 
        break; 
    case ‘X’: 
        /* radio is to be turned off */ 
        if (eRadioState == RADIO_TX_ON || 
             eRadioState == RADIO_RX_ON) 
        { 
             !! Turn off power to radio 
             eRadioState = RADIO_OFF; 
        } 
        else 
            !! Handle error -- radio not on 
        break; 
    ... 
    default: 
        !! Deal with the error of a bad message 
        break; 
    } 
  } 
} 

void vSetFrequency (int i) 
{ 
    !! Set radio frequency to iFrequency 
    /* turn on the transmitter in 3 ms */ 
    wdStart (wdRadio, 3, vTurnOnTxorRx, i); 
} 
 
void vTurnOnTxorRx (int i) 
{ 
    if  (i == (int) ‘T’) 
    { 
        !! Turn on the transmitter 
        /* tell the task that the radio is ready to go */ 
        msgQSend (queueRadio, “K”, 1,  
                WAIT_FOREVER, MSG_PRI_NORMAL); 
    } 
    else   /* i == (int) ‘R’ */ 
    { 
         !! Turn on the receiver 
         /* tell the task that the radio is ready to go */ 
         msgQSend (queueRadio, “L”, 1,  
                 WAIT_FOREVER, MSG_PRI_NORMAL); 
    } 
} 

Figure 7.7b  Using timer callback function, cont. 
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Calls wdStart(wdRadio, 12, vSetFrequency, (int) a_chMsg[0]) 

Action and call sequence 

Causes vSetFrequency() to execute 
•  calls wdStart(wdRadio, 3, vTurnOnTxorRx, i) 

vRadioControlTask RTOS 

Causes vTurnOnTxorRx() to execute 
•  sends msg to vRadioControl Task 

Receives msg indicating radio is ready to use 
Begins using radio 

bl
oc

ke
d 
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Time 
1 ms interval Task calls  

wdStart(wdRadio, 12,  
vSetFrequency, (int) a_chMsg[0]) 

Execution 

•  Implementation questions: 
–  Does timer use a hardware timer or system tick? 

–  Example above assumes hardware timer; VxWorks uses system tick.  
–  What code actually calls vSetFrequency()?  (Whose stack will it run on?) 

–  Book suggests two alternatives (neither of which is the calling task!): 
–  May be called from ISR/handler for timer. 
–  May be called from special high priority task in RTOS. 

–  What are the tradeoffs?  What jitter might be observed?  

vRadioControlTask 

wdRadio timer starts countdown 

Task blocks on MsgQReceive() 

timer expires 

RTOS causes 
vSetFrequency() 

to execute 
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Discussion 

•  What are advantages of using timer callback functions rather than 
sequence of calls to delay task? 
–  Precise control of timing 

•  System tick may not be precise enough; hardware timer gives greater control 

•  Clock jitter arising in delay of tasks may be a problem 

–  Simpler task structure 
•  At how many points in code can vRadioControlTask block? 

•  What advantages does this offer? 

•  What are tradeoffs in complexity of application code? 
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Discussion 

•  Are there disadvantages of using timer callback functions? 
–  Compared with sequence of calls to delay task, which version of source code 

is easier to understand and modify? 
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7.3: Events 
•  A nifty RTOS service you’ll implement in lab 7.  
•  An event is a Boolean flag that tasks can 

–  create, 
–  set, 
–  reset, and 
–  wait for (block on). 

•  Events generally handled in groups by RTOS.  
–  Task operations are on sets of events: dramatically increases  

power and flexibility of event construct. 
–  Pay particular attention to how events differ from semaphores. 
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Events: standard features 

•  More than one task can be unblocked by same event. 
–  When event occurs, RTOS unblocks all waiting tasks. 

–  Tasks then run in priority order – normal scheduling. 

•  Tasks can wait for any subset of events in event group. 

–  Wait until any occurs or until all occur.  

•  After event occurs and waiting tasks unblocked, event must be reset. 

–  Some kernels handle this, others leave it to task code. 

•  Let’s see an example... 
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Event routines 
These are used in example on next slide (from AMX): 

 

ajevcre(AMXID *p_amxidGroup, unsigned int uValueInit, char *p_chTag) 

–  Creates group of 16 events. First parameter points to location that will store the 16-bit 
event group. Initial value of all events in group is in uValueInit.  char * is string name 
of object (unique to AMX).  

 

ajevsig(AMXID amxidGroup, unsigned int uMask, unsigned int uValueNew) 

–  Sets or resets events in specified group.  uMask specifies affected subset, and 
uValueNew specifies desired values. 

 

ajevwat(AMXID amxidGroup, unsigned int uMask, unsigned int uValue, int iMatch, long lTimeout) 

–  Causes task to wait for one or more events in group. uMask specifies subset, uValue 
specifies value desired, iMatch says to block when all specified events occur or just 
one. 
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/* handle for the trigger group of events */  
AMXID amxidTrigger; 
 
/* constants for use in the group */ 
#define TRIGGER_MASK  0x0001 
#define TRIGGER_SET  0x0001 
#define TRIGGER_RESET  0x0000 
#define KEY_MASK  0x0002 
#define KEY_SET  0x0002 
#define KEY_RESET  0x0000 
 
void main (void) 
{ 
    … 
    /* create event group with trigger and keyboard  
        events reset */ 
    ajevcre (&amxidTrigger, 0, “EVTR”); 
    … 
} 
 
void interrupt vTriggerISR (void) 
{ 
    /* trigger pulled.  Set event */ 
    ajevsig (amxidTrigger, TRIGGER_MASK,  
                  TRIGGER_SET); 
} 
 
void interrupt vKeyISR (void) 
{ 
    /* key pressed.  Set event */ 
    ajevsig (amxidTrigger, KEY_MASK, KEY_SET); 
    !! store value of key pressed 
} 

void vScanTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for user to pull the trigger */ 
        ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET, 
                      WAIT_FOR_ANY, WAIT_FOREVER); 
        /* reset the trigger event */ 
        ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET); 
 
        !! Turn on the scanner hardware, look for scan 
        … 
        !! When scan found, turn off scanner 
    } 
} 
 
void vRadioTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for trigger pull or key press */ 
        ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK, 
               TRIGGER_SET | KEY_SET, WAIT_FOR_ANY, WAIT_FOREVER); 
        /* reset key event.  (trigger will be reset by scantask) */ 
        ajevsig (amxidTrigger, KEY_MASK, KEY_RESET); 
  
       !! turn on the radio 
       … 
       !! when data has been sent, turn off the radio 
    } 
} 

Figure 7.8: Using events in a cordless bar-code scanner 
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Events: discussion 
•  What kind of bugs come up using events? 

–  Not resetting all events at appropriate point in code 
•  Tricky since multiple tasks may be unblocked by event: which one resets?   
•  Easier for application code if RTOS resets 

–  Waiting on wrong mask or wrong value 
–  Resetting using wrong mask or wrong value 
–  Misunderstanding functionality: when waiting for all of three events, do they 

all have to be set at same time? (Are events “buffered”?) 

•  How difficult to add support for events in YAK? 
–  What new kernel data structures are required? 
–  How complex are create(), pend(), and post() functions?  
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YAK event support 

Event group (16 bits) 

YKEVENT *YKEventCreate( 
    unsigned initialValue) 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

unsigned YKEventPend(YKEVENT *event,  
   unsigned eventMask, int waitMode) 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

Specifies 
subset 

Either EVENT_WAIT_ANY 
or EVENT_WAIT_ALL 

void YKEventSet(YKEVENT *event,  
   unsigned eventMask) 

•  Sets all bits in mask to 1  
•  Unblocks tasks if their conditions met 

 

1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 

void YKEventReset(YKEVENT *event,  
    unsigned eventMask) 

•  Sets all bits in mask to 0  
•  Does not unblock tasks 

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 

Returns value of  
event group at time 

function returns 
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Comparing alternatives 
•  Semaphores 

–  Usually faster and simpler than events and queues 
–  Really just a one-bit message 
–  A task can block on just one semaphore at a time 

•  Events 
–  A little more complicated than semaphores, a little slower 
–  A task can wait for any (or all) of several events at same time 
–  Multiple tasks can be unblocked by a single event 

•  Queues (and mailboxes and pipes) 
–  Message can consist of much more than one bit of information 
–  A task can block on only one queue at a time 
–  More system overhead, potential for bugs in application code 
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7.4: Memory management 

•  Designers usually avoid using malloc and free because they are  
typically slow, with unpredictable execution times 
–  Why do these functions have high overhead? 

•  Alternative: simpler functions supported by RTOS 
–  Typical functions allocate and free fixed size buffers 

•  Key questions: 
–  Why would these functions be faster, more predictable than malloc and free?  

–  Why are these functions part of the RTOS?  
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Memory pools 

•  Typical usage: application code sets up pools, each consisting of 
memory blocks or buffers of the same fixed size. 

•  The RTOS manages pools, providing three key functions: 
–  Initialize pool. Parameters include unique ID, base address, number of blocks, size 

of each block, etc. 

–  Obtain block. Returns pointer to memory block that can be used. If none available, 
caller is blocked or null pointer is returned immediately. 

–  Release block. Caller passes pointer to memory block, RTOS returns that block to 
the (available) pool. 
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Example: memory management functions in MultiTask! 

Memory 

p_vMemory 

uBufSize 

uBufCount 

int init_mem_pool( 
    unsigned int uPoolId, 
    void *p_vMemory, 
    unsigned int uBufSize, 
    unsigned int uBufCount, 
    unsigned int uPoolType); 
 
void *getbuf( 
   unsigned int uPoolId, 
   unsigned int uTimeout);  
 
void *reqbuf( 
   unsigned int uPoolId); 
 
void relbuf( 
   unsigned int uPoolId, 
   void *p_vBuffer); 

…
 

uPoolType: used by  
task or interrupt code? 

reqbuf: returns NULL 
pointer right away if 
no buffer. 

getbuf: blocks if no 
buffer available.  
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#define LINE_POOL                    1 
#define MAX_LINE_LENGTH    40 
#define MAX_LINES                  80 
 
static char a_lines[MAX_LINES][MAX_LINE_LENGTH]; 
 
void main (void) 
{ 
    … 
    init_mem_pool (LINE_POOL, a_lines, MAX_LINES, 
            MAX_LINE_LENGTH, TASK_POOL); 
    … 
} 
 
void vPrintOutputTask (void) 
{ 
    char *p_chLine; 
    while (TRUE)  { 
        /* wait for a line to come in */ 
        p_chLine = rcvmsg(PRINT_MBOX, WAIT_FOREVER); 
 
        !! Send line to printer 
 
        /* free the buffer back to the pool */ 
        relbuf (LINE_POOL, p_chLine); 
    } 
} 
 

void vPrintFormatTask (void) 
{ 
    char *p_chLine;    /* pointer to current line */ 
    while (TRUE)  { 
       !! Wait for request for print job 
       /* Format lines and send them to vPrintOutputTask */ 
       p_chLine = getbuf (LINE_POOL, WAIT_FOREVER); 
       sprintf (p_chLine, “INVENTORY REPORT”); 
       sndmsg (PRINT_MBOX, p_chLine, PRIORITY_NORMAL); 
       p_chLine = getbuf (LINE_POOL, WAIT_FOREVER); 
       sprintf (p_chLine, “Date: %02d/%02d/%02d”, iMonth,  
                 iDay, iYear % 100); 
       sndmsg (PRINT_MBOX, p_chLine, PRIORITY_NORMAL); 
       p_chLine = getbuf (LINE_POOL, WAIT_FOREVER); 
       sprintf (p_chLine, “Time: %02d:%02d”, iHour, iMinute); 
       sndmsg (PRINT_MBOX, p_chLine, PRIORITY_NORMAL); 
       … 
    } 
} 

Figure 7.11: Using memory management functions 

This code has some problems.   
Can you spot them? 
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Discussion 

•  Why must application code set up pool? 
–  RTOS does not know what memory to use, how big pool should be, or the 

size of blocks 

•  Common to use 3 or 4 pools, each with a different block size 
–  What can go wrong as a result?  

–  Compared with malloc and free: 
•  In what ways is this approach more efficient? 
•  In what ways is this approach less efficient? 
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SCHEDULER 

7.5: Rules for ISRs in an RTOS 

1.  Interrupt routine must not call any RTOS function that might 
block caller 

–  Examples: pend on semaphore, queue, event, memory buffer, etc. 
 

2.  Interrupt code must not call any RTOS function that might 
cause a task switch unless RTOS knows that interrupt code, 
not a task, is running 

–  This is called fair warning 

–  Examples: post to semaphore, queue, mailbox, etc. 
 

 Critical to understand these in creating your RTOS.  
 They aren’t exactly new to us, but they deserve discussion. 

BLOCKING 
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static int iTemperatures[2]; 
 
void interrupt vReadTemperatures (void) 
{ 
    GetSemaphore (SEM_TEMP); 
    iTemperatures[0] = !! read in value from HW 
    iTemperatures[1] = !! read in value from HW 
    GiveSemaphore (SEM_TEMP); 
} 
 
void vTaskTestTemperatures (void) 
{ 
    int iTemp0, iTemp1; 
    while (TRUE) 
    { 
        GetSemaphore (SEM_TEMP); 
        iTemp0 = iTemperatures[0]; 
        iTemp1 = iTemperatures[1]; 
        GiveSemaphore (SEM_TEMP); 
        if (ITemp0 != iTemp1) 
            !! Set off howling alarm 
    } 
} 

What’s wrong with this code? 

•  “... the system would grind to a halt in a 
sort of one-armed deadly embrace.” 

•  If we break rule 1, the attempt to block 
the interrupt routine will actually block 
the current (interrupted) task. 

•  What happens if interrupt happens while 
task is here? 
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Alternative behavior 

•  In this scenario, some kernels would 
–  assume (incorrectly) that current task is actually making call,  

–  notice that the current task already has the semaphore, and then 

–  let the ISR continue past the GetSemaphore() call 

•  Result:  
–  Because RTOS functions are not used properly, the semaphore fails to 

protect the shared resource 

–  Author: compared with the one-armed deadly embrace, this is  
“equally useless behavior” 
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Discussion 

•  Serious problems also arise if ISR interrupts a different task – not the 
one with semaphore – and “blocks” 
–  RTOS will block the current task (the task that happened to be interrupted) 

until semaphore becomes available 
–  ISR is also effectively “blocked” along with task 

•  ISR context is saved on task stack 
•  ISR/handler suspended at point of call to GetSemaphore() 

•  Interrupts disabled at current and lower priority levels, hence ignored until 
release of semaphore 

•  Dispatcher switches to different stack, causes another task to execute 
•  When interrupted task is unblocked, execution will resume in ISR on stack 
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int iQueueTemp;                  /* Fig. 7.13 */ 
 
void interrupt vReadTemperatures (void) 
{ 
    int aTemp[2];       /* 16 bit values */ 
    int iError; 
 
    aTemp[0] = !! read in value from HW 
    aTemp[1] = !! read in value from HW 
    sc_qpost (iQueueTemp, (char *)  
        ((aTemp[0] << 16) | aTemp[1]), &iError); 
} 
 
void vMainTask (void) 
{ 
    long int lTemps;   /* 32 bit value */ 
    int aTemp[2]; 
    int iError; 
 
    while (TRUE) 
    { 
        lTemps = (long) sc_qpend (iQueueTemp,  
            WAIT_FOREVER, sizeof(int), &iError); 
        aTemp[0] = (int) (lTemps >> 16); 
        aTemp[1] = (int) (lTemps & 0x0000ffff); 
        if (aTemp[0] != aTemp[1]) 
            !! Set off howling alarm 
    } 
} 

Is this code okay? 

•  What assumptions did programmer make? 
•  Is rule 1 violated? 

•  What happens when the queue fills up? 
•  Is rule 2 violated? 

•  What must be true about sc_qpost to avoid 
problems? 
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Violating rule 2 
How YAK ISRs should work 

ISR/handler 

RTOS 

TaskHigh 

TaskLow 

(blocked 
 on queue) 

YKQPost 

YKExitISR, scheduler, dispatcher 

YKEnterISR 

What would happen if RTOS didn’t know post was called by ISR 

ISR/handler 

RTOS 

TaskHigh 

TaskLow 

(blocked 
 on queue) 

YKQPost 

YKExitISR, scheduler, dispatcher 

YKEnterISR 

Task switch would happen too soon 
(on 8086, EOI would be missed!) 
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Methods of obeying rule 2  

•  RTOS intercepts all interrupts, 
then calls appropriate ISR  

•  RTOS always knows that it is 
executing an ISR 

•  ISR returns to RTOS before 
returning to task 

Method 1 

ISR 

RTOS 

TaskHigh 

TaskLow 

Post 

Return 

•  RTOS provides a routine that ISRs 
must call to inform the RTOS that 
an interrupt is running 

•  Near end, ISR calls RTOS routine 
that calls scheduler 

•  This is approach used in YAK 

Method 2 

ISR 

RTOS 

TaskHigh 

TaskLow 

Post 

ExitISR 

EnterISR 

How could you implement this, and  
what can go wrong? 

What can go wrong here? 
What are tradeoffs with method 1? 
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Methods of obeying rule 2  

•  Method 3 
–  RTOS provides separate set of functions to be called exclusively by 

interrupt routines: 
•  ISRSemPost(), ISRQPost(), etc. 

–  Regular post functions can be called only from task code 
•  SemPost(), QPost(), etc. 

–  Scheduler called at end of task post routines, but not ISR post 
routines  

What could go wrong in this approach? 
What are tradeoffs of three methods? 
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YAK implementation 

•  YAK uses method 2 to provide “fair warning” 
–  What is purpose of YKEnterISR()? 
–  What is purpose of YKExitISR()? 
–  What test is required in every post function? 

•  What happens if  
–  You forget to call YKEnterISR() or YKExitISR() in an ISR? 
–  Interrupts are enabled before call to YKEnterISR(), or after call to 

YKExitISR()? 
–  Post function doesn’t correctly test for call from interrupt code? 
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Rule 2 and nested interrupts 
•  If a higher-priority interrupt can interrupt a lower-priority ISR, then another 

consideration comes into play. 

Low-priority ISR 

RTOS 

TaskHigh 

TaskLow 

Post 

ExitISR 

High-priority ISR 

Problem: scheduler runs 
TaskHigh instead of  

finishing low-priority ISR. 

•  Solution:  
–  ExitISR routine in RTOS needs to know if it is returning to a lower-priority ISR or 

to task code.  
•  How is this addressed in YAK and what is runtime overhead? 

425 F18 6:70 ©J Archibald 

Problem 7.1: 
What’s wrong with 

this code? 

void vLookForInputTask (void) 
{ 
    while (TRUE) 
    { 
        … 
        if (!! a key has been pressed on the keyboard) 
            vGetKey( ); 
        … 
    } 
} 
 
void vGetKey (void) 
{ 
    char ch; 
 
    ch = !! get key from keyboard 
    /* now send key to task that handles commands */ 
    sndmsg (KEY_MBOX, &ch, PRIORITY_NORMAL); 
} 
 
void vHandleKeyCommandsTask (void) 
{ 
    char *p_chLine; 
    char ch; 
 
    while (TRUE) 
    {     /* wait for key to be received */ 
        p_chLine = rcvmsg (KEY_MBOX, WAIT_FOREVER); 
        ch = *p_chLine; 
        !! do what is needed with ch 
    } 
} 

Assumptions: 
•  Messages are void * 
•  sndmsg() puts void * in queue 
•  rcvmsg() returns void * 
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Problem 7.2: Can you rewrite this code using semaphores in 
place of events? 

/* handle for the trigger group of events */  
AMXID amxidTrigger; 
 
/* constants for use in the group */ 
#define TRIGGER_MASK  0x0001 
#define TRIGGER_SET  0x0001 
#define TRIGGER_RESET  0x0000 
 
void main (void) 
{ 
    … 
    /* create event group with all events reset */ 
    ajevcre (&amxidTrigger, 0, “EVTR”); 
    … 
} 
 
void interrupt vTriggerISR (void) 
{ 
    /* trigger pulled.  Set event */ 
    ajevsig (amxidTrigger, TRIGGER_MASK,  
                  TRIGGER_SET); 
} 

void vScanTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for user to pull the trigger */ 
        ajevwat (amxidTrigger, TRIGGER_MASK,  
                      TRIGGER_SET, WAIT_FOR_ANY,  
                       WAIT_FOREVER); 
      
        /* reset the trigger event */ 
        ajevsig (amxidTrigger, TRIGGER_MASK,  
                       TRIGGER_RESET); 
 
        !! Turn on the scanner hardware, look for scan 
        … 
        !! When scan found, turn off scanner 
    } 
} 
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Problem 7.2b: Rewrite with semaphores? 
/* a handle for the trigger group of events */  
AMXID amxidTrigger; 
 
/* constants for use in the group */ 
#define TRIGGER_MASK  0x0001 
#define TRIGGER_SET  0x0001 
#define TRIGGER_RESET  0x0000 
#define KEY_MASK  0x0002 
#define KEY_SET  0x0002 
#define KEY_RESET  0x0000 
 
void main (void) 
{ 
    … 
    /* create event group with trigger and keyboard  
        events reset */ 
    ajevcre (&amxidTrigger, 0, “EVTR”); 
    … } 
 
void interrupt vTriggerISR (void) 
{ 
    /* trigger pulled.  Set event */ 
    ajevsig (amxidTrigger, TRIGGER_MASK,  
                  TRIGGER_SET); 
} 
 
void interrupt vKeyISR (void) 
{ 
    /* key pressed.  Set event */ 
    ajevsig (amxidTrigger, KEY_MASK, KEY_SET); 
    !! store value of key pressed 
} 

void vScanTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for user to pull the trigger */ 
        ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET, 
                      WAIT_FOR_ANY, WAIT_FOREVER); 
        /* reset the trigger event */ 
        ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET); 
 
        !! Turn on the scanner hardware, look for scan 
        … 
        !! When scan found, turn off scanner 
    } 
} 
 
void vRadioTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for trigger pull or key press */ 
        ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK, 
               TRIGGER_SET | KEY_SET, WAIT_FOR_ANY, 
                WAIT_FOREVER); 
        /* reset key event.  (trigger will be reset by scantask) */ 
        ajevsig (amxidTrigger, KEY_MASK, KEY_RESET); 
  
       !! turn on the radio 
       … 
       !! when data has been sent, turn off the radio 
    } 
} 
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Problem 7.2c: Rewrite with semaphores? 
/* a handle for the trigger group of events */  
AMXID amxidTrigger; 
 
/* constants for use in the group */ 
#define TRIGGER_MASK  0x0001 
#define TRIGGER_SET  0x0001 
#define TRIGGER_RESET  0x0000 
#define KEY_MASK  0x0002 
#define KEY_SET  0x0002 
#define KEY_RESET  0x0000 
 
void main (void) 
{ 
    … 
    /* create event group with trigger and keyboard  
        events reset */ 
    ajevcre (&amxidTrigger, 0, “EVTR”); 
    … } 
 
void interrupt vTriggerISR (void) 
{ 
    /* trigger pulled.  Set event */ 
    ajevsig (amxidTrigger, TRIGGER_MASK,  
                  TRIGGER_SET); 
} 
 
void interrupt vKeyISR (void) 
{ 
    /* key pressed.  Set event */ 
    ajevsig (amxidTrigger, KEY_MASK, KEY_SET); 
    !! store value of key pressed 
} 

void vScanTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for user to pull the trigger */ 
        ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET, 
                      WAIT_FOR_ANY, WAIT_FOREVER); 
        /* reset the trigger event */ 
        ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET); 
 
        !! Turn on the scanner hardware, look for scan 
        … 
        !! When scan found, turn off scanner 
    } 
} 
 
void vRadioTask (void) 
{ 
    … 
    while (TRUE) 
    { 
        /* wait for trigger pull or key press */ 
        ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK, 
               TRIGGER_SET | KEY_SET, WAIT_FOR_ALL, 
                WAIT_FOREVER); 
        /* reset key event.  (trigger will be reset by scantask) */ 
        ajevsig (amxidTrigger, KEY_MASK, KEY_RESET); 
  
       !! turn on the radio 
       … 
       !! when data has been sent, turn off the radio 
    } 
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Problem 7.3: 
What’s wrong with 

this code? 

void vGetCharactersTask (void) 
{ 
    while (FOREVER) 
    { 
        if (!! have urgent command char) 
            OSQPost (URGENT_QUEUE, !!next urgent cmd char); 
        if (!! have regular command char) 
            OSQPost (REGULAR_QUEUE, !!next regular cmd char); 
        ... 
    } 
} 
 
void vUseCharactersTask (void) 
{ 
    char chUrgent; 
    char chNormal; 
    while (FOREVER) 
    { 
        chUrgent = OSQPend (URGENT_QUEUE, WAIT_FOREVER); 
        !! handle chUrgent 
 
        chNormal = OSQPend (REGULAR_QUEUE, WAIT_FOREVER); 
        !! handle chNormal 
    } 
} 
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Problem 7.4: Does 
this change fix 

problem in previous 
slide? 

void vGetCharactersTask (void) 
{ 
    while (FOREVER) 
    { 
        if (!! have urgent command char) 
            OSQPost (URGENT_QUEUE, !!next urgent cmd char); 
        if (!! have regular command char) 
            OSQPost (REGULAR_QUEUE, !!next regular cmd char); 
        ... 
    } 
} 
 
void vUseCharactersTask (void) 
{ 
    char chUrgent; 
    char chNormal; 
    while (FOREVER) 
    { 
        chUrgent = OSQPend (URGENT_QUEUE, WAIT_100_MSEC); 
        !! handle chUrgent 
 
        chNormal = OSQPend (REGULAR_QUEUE, WAIT_100_MSEC); 
        !! handle chNormal 
    } 
} 
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Problem 7.5 

In Section 7.4 we suggested that one reasonable design for memory 
management is to allocate three or four memory buffer pools, each 
with a different size of buffer.  
 
What drawbacks can you see to this design compared to using 
malloc and free?  
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Problem 7.6: What is 
wrong with this 

code?  

void task1 (void) 
{ 
    BUFFER *p_bufferA, *p_bufferA1; 
    … 
    p_bufferA   = GetBuffer( ); 
    p_bufferA1 = GetBuffer( ); 
     
    !! put useful data into p_bufferA 
    SendMsg(task2, p_bufferA); 
    !! copy data from p_bufferA into p_bufferA1 
    … 
    FreeBuffer(p_bufferA1); 
} 
 
void task2 (void) 
{ 
    BUFFER *p_bufferB; 
    … 
    p_bufferB = GetMsg( ); 
    !! use the data in p_bufferB 
  
    FreeBuffer(p_bufferB); 
    … 
} 
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Problem 7.7: Does 
this change fix 

problem in previous 
slide?  

void task1 (void) 
{ 
    BUFFER *p_bufferA, *p_bufferA1; 
    … 
    GetSemaphore(SEM_OUR_MEMORY); 
    p_bufferA   = GetBuffer ( ); 
    p_bufferA1 = GetBuffer ( ); 
    GiveSemaphore(SEM_OUR_MEMORY); 
     
    !! put useful data into p_bufferA 
    SendMsg (task2, p_bufferA); 
    !! copy data from p_bufferA into p_bufferA1 
    … 
    FreeBuffer (p_bufferA1); 
} 
 
void task2 (void) 
{ 
    BUFFER *p_bufferB; 
    … 
    p_bufferB = GetMsg ( ); 
    !! use the data in p_bufferB 
  
    GetSemaphore(SEM_OUR_MEMORY); 
    FreeBuffer (p_bufferB); 
    GiveSemaphore(SEM_OUR_MEMORY); 
    … 
} 

Can it be fixed using 
semaphores?  
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Problem 7.8 
The text outlines three different plans by which an RTOS finds out that an 
interrupt routine is executing. Compare these three plans.  Which is likely 
to have the best interrupt response time, and which will be the easiest to 
create user code for? Are there differences in memory requirements? 

Plan 1: RTOS intercepts all interrupts, then calls appropriate ISR for 
each. Control returns to RTOS at end of ISR. 
 
Plan 2: RTOS provides function that must be called by each ISR at 
beginning, and another to be called at the end. 
 

Plan 3: RTOS provides separate functions for ISRs and tasks.  
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Problem 7.9 

On some RTOSs you can write two kinds of interrupt routines: 
conforming routines, which tell the RTOS when they enter and exit, 
and nonconforming routines, which do not.   
 
What advantage does a nonconforming routine have? 
 

What disadvantages? 


